UCID- 20528

CIRCULATION COPY

SUBJECT TO RECALL
IN TWO WEEKS

PRAXIS
RELEASE NOTES
VERSIONS 7.4 and 7.5

Frederick W. Holloway

September 2, 1985

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and
may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

DISCLAIMER

T'his document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completefless, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial products, process, or sérvice Sy tradte ‘name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, ré’dunﬁendnﬁbh, or
favoring by the United Stales Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the University of
California, and shall not be used for advertising or product endorsement purposes.

Printed in the United States of Amer:ia
Available from
Natwenal Technical Information Serv.cy
LS. Departinent of Commerce
5285 Port Royal Road
Springfield, ¥a 22161

Price: Printed Copv s Microtiche 54,50
Domestic Domestic
Page Range Price Page Range Price

001-025 $ 7.00 326-350 $ 26.50
026-050 8.50 351-375 28.00
051-075 10.00 376-400 29.50

76-100 11.50 401-426 31.00
101-125 13.00 427-450 32,50
126-150 14.50 451-475 34.00
151-175 16.00 476-500 35.50
176-200 17.50 501-525 37.00
201-225 19.00 526-550 38.50
226-250 20.50 551-575 40.00
251-275 22.00 576-600 41.50
276-300 23.50 601-up'
301-325 25.00

'Add 1.50 for each additional 25 page increment, or portion
thereof from 601 pages up.

PPP RRR AAAA X it SS
P R R A A X X I S
P R R A A X X TIIL SSS

Release Notes
Versions 7.4 and 7.5

Fred W. Holloway

Controls and Analysis Group
Nova High Energy Laser Facility
Laser Program
Lawrence Livermore National Laboratory
P. 0. Box 5508, L-492
Livermore, CA 94550
(415) 422-5917

Generated on: August 30, 1985

file: disk dev:[praxisdev.documents.version75]version75.doc

CHAPTER

CHAPTER

CHAPTER

1

1.
1.
1

NN -

.1

o

« e e
. e
w N -

e e o @ e e o »
NN N MU SRS RWWOWND NN
. s s e . .
S W N - — N b

» . . .
. .
et BN

NN NN RN DD
.

.

N P~

.
[9%)

RO NN
.
o clile <Jv <o ohlw LN

. e
.« @
[S

.

w N -

CONTENTS

Table of Contents

INTRODUCTION

PURPOSE OF THESE NOTES
INSTRUCTIONS FOR USE « + « + .

Global Symbols For Switching Between Versions

IMPROVEMENTS TO THE PRAXIS COMPILER

LINE NUMBERS e e e s s e e e e e e
Through To Compiler Output Files . .
Lines That Have Only A <FF> . . .

Line Numbers Displayed On Traceback (VAX)
INTERFACE TO THE VAX VMS SYMBOLIC DEBUGGER

Use routine names Default True On VAX

How To Use The VMS Symbolic Debugger With Praxis

RUN TIME LIBRARY IMPROVEMENTS ., .
Screen Management Routines

VARIADIC ARGUMENT IMPROVEMENTS
Small Size Variadics

Zero Arguments Passed To Variadic Parameter

Variadic Flexible Arrays

OVERFLOW DETECTION
Integers And Cardinal
Floating Point Overflow

PACKING e e e e e
Packed Structures Of Unpacked Objects
RANGECHECKING IMPROVEMENTS

Run—time. e e e e e s e e s e e

DEBUGGING IMPROVEMENTS
Better Diagnostic Messages

Keyword References To Variadic Parameters

Rangechecking On Size Conversions At Run—time
Rangechecking Of Expression Evaluation At

Optimization Of Run-time Rangechecking.

ADDRESSOF Function Argument Diagnostic Added .

Better Explanation Of Some Diagnositics
Source Lines Over 132 Characters Diagnostic

Message Added

EXAMPLE PROGRAMS

INTEGER OVERFLOW DETECTION
VARIADIC ARGUMENTS OF SMALL SIZE . .
VARIADIC NUMBER OF FLEXIBLE ARRAYS . .
KEYWORD REFERENCES TO VARIADICS . . .
PACKED STRUCTURES OF ODD SIZE UNPACKED
USE OF RTL SCREEN MANAGEMENT ROUTINES

OBJECTS

p—
)
NN -

NN N
| T P T O T O

| A I S B

|
NN NNNNTTOO OO TWW W W

NRNONNORN NN NNDNNDND NN
] L |

TTYTTY
o © & 0o 0o o

Page ii

CHAPTER 4 SUGGESTED FUTURE IMPROVEMENTS

DECLARATIONS ¢ & ¢ 4 o« & & o o o o o o o o o » o o
Packed Packed Structures Of Characters e o e s
Equivalent Integer And Cardinal Constants . . .
Silly Declarations . . « & « o + 4 o & o o » o« &

DYNAMIC ALLOCATION ISSUES+ « « & ¢ & « o &
Allocation Of Objects With Holes
Type Check Of Allocate Size Variable

INITIAL CONDITIONS . ¢ & ¢ ¢ ¢ 4 + « o o o o o »
Initially Sizeof « ¢« . ¢ ¢« ¢ ¢« ¢« o &

SETS & v v 6 o o v 6 o o v e e e s e e e e e e e s

MATHEMATICAL OPERATIONS . . . & . « ¢ « ¢ o o o &

.
.

w N -

[

.
N o=
!

.
[—

* @
! |
VPP WLWLDWWLWNRNDRONNND ==

Long Real On PDP Not Implemented.
Round, Floor, Ceiling For The PDP-11 . ,
PROCEDURE INTERFACE ISSUES « « + + « & o &

.1 Reincorporate The Conversion Routines . . « . .

2 Unsigned Comparisons . . .+ o & &+ & o« o o o « & &
.5.3 Real Exponentiation . . . ¢ ¢« 2 ¢ o & o o » o o 4=
.4 Long Real Constants .+ « « « o 4 « o » o o o o o b4~

5

6

S S N A A T T N~ i L Y S i o i I b R Ol
P
OOV UL ULUN O EWWRORNDN P - —
.
bbbbbbb#bkb-&l\bbbbbbb#\bbb

6.1 Conversion Of Real To Integer On PDP . . , . . . 4-
.6.2 Status Of "module name . Imported_ from" Syntax? 4-
.6.3 Confusing N On Multiple Flexible Arrays 4-
.6.4 OUT Flexible Array - What Is It? . . . « . « . . 4=
.6.5 Functions Which Return Flexible Arrays 4-
.6.6 Reference To Part Of Structure Returned From
FUunction o+ o v « « o o « « o o + « o « o o « o o« 45
4,7 RUN TIME SUPPORT, LSI-Il . . + . . « & « o o o« o« » 4-6
4,7.1 LSI-11 Interrupt Routines . . . + + « « &« &» « o 4-6
4.7.2 TEXTIO Separation . .+ 4 o & &« + & o« « » o « o« » 4-6
4.8 BETTER DEBUGGING AND DIAGNOSTICS . . + + « + + o« « 4-6
4.8.1 Additional Compile-time Range Checking o 4—7
4,8,.2 Range Checking On Subscripts Of Array
CONSETUCEOTS v v v o « 4 o o o « o s o o o o o o 4=7
4.8.3 Check Forward Procedure Same As Actual Procedure 4-7
4.8.4 Check Size Of Actual Arg <= Size Of Formal Arg
When By VAL . & v v 4« v v 4 o « 2 o o o o « o « 4-7
4,8.5 Detection Of Comparisons Of Objects With Holes . 4-7
4.8.6 Warning On Too Few Components In Table Of
SETINgS & v v & ¢ ¢ o 4 o v e e e e s e e e . 47
4.8.7 More Accurate Line Number Of Errors . . « + o« . 4-7
4.8.8 Create Unique_Global Symbols Compiler Directive 4-7
4.8.9 Diagnostic When SIZEOF Result Will Not Fit. . . 4-8
4.8.10 Diagnostic Upon Export Of Dynamic Item From Main
Module . . 4 ¢ & v v v v « v ¢ v « s 4 s 4 e o . 48
4.8.11 Diagnostic That Whatever Features Of Packed
Packed Which Don“t Work « . + +. « « . 4-8
4,9 OPTIMIZATION IDEAS . + ¢ « « v « « « o « &+ s « » o« 4-8
4.9.1 Array Referencing On LSI-I1 4-8
4.9.2 Initial Conditions Of Arrays, Structures 4-8
4.9.3 Register Allocation . . « +v « « « o « &« &« o & » 4-8
4.9.4 CG_Table Pattern Improvements . . o . + + - « « 4-9
4,9.5 Library Functions For String Operations 4-9
4.10 VMS VERSION 4 ISSUES . . . + v & + & o « o o« o o« » 479
4.10,1 Module Name Limit Of 9 Characters « « « 4-9

4.11 SUPPORT ISSUES v ¢ v ¢ « « o « « « o « o o o o » o 49
4.11.1 32 Bit Integer In TEXTIO . . . « &+ + « « o « « « 49
4.11.2 Holes In The Compiler « . « ¢« « « +» « 4-9
4,12 DOCUMENTATION . ¢ & ¢ ¢« ¢ &+ ¢ 4 4 o o « o o « o » &9
4.12.1 Revise/Rewrite "Programming In Praxis'" Manual., 4-10
4,12.2 Test Suite . o « « ¢ « ¢ v o v 4 o « o« o o & » 4-10
4,12.3 Viewgraphs . . o o o o o s o o o o « o o o « « 4-10
4,13 GENERAL SUPPORT . & & + & &« & 4 o o + « o o o« « 4-10

4.13.1 WALKER ¢ . . ¢ ¢ o ¢ ¢ o o o - & o &
4,13,2 CROSS (Phebus) « « &« ¢ v v v = v ¢ v o o s & » 410
4.13.3 User Analyzer . . . ¢« ¢« + ¢ . 4 o « « o « « « 4-10

CHAPTER 5 DETAIL CODE CHANGES TO THE COMPILER

References
The microfiche of the VMS Symbolic Debugger, version 4,1

A complete list of references to the reports on Praxis is contained within the
"Praxis Language Environment Distribution Package Description", UCID-30196 as
revised January 1985,

Acknowledgment - Anthony De Groot

The addition of Symbolic Debugging support for Praxis programs under the VMS
operating system was due completely to the efforts of Tony De Groot during the
last six weeks or so prior to his leaving the Controls Group. This required
major additions and modifications to the compiler, and substantial detective
work in that the interface definition to the VSM Symbolic Debugger is not
described or supported by DEC. The Symbolic Debugger should be a valuable tool
for debugging of control system software. It has already proved valuable in
debugging of the compiler itself,

CHAPTER 1

INTRODUCTION

1.1 PURPOSE OF THESE NOTES

These release notes are intended as a guide to those responsible for Nova
software. They assume extensive knowledge of the present Praxis language.

Each improvement made in Praxis versions 7.4 and 7.5 1is described. The
descriptions are organized as shown in the table of contents. Many of the
improvements have example programs which are contained within the chapter on
example programs. For completeness, the final chapter lists the specific areas
within the compiler which were modified. These will only be wuseful to those
working on the compiler itself.
The improvements made in this version of rhe compiler include

——————————————— Version 7.4 -———-—==----w--mmoo-—————

Source Line numbers passed through to the output files

Line numbers displayed on traceback

Support and interface for the VMS Symbolic Debugger

Support {(partial) for the VMS Run Time Library

——————————————— Version 7.5 —-=-—=-=——--- oo

Integer Overflow detection

Improved support for Variadics

Fixed compiler crash on use of zero length structures

Corrected errors in declaration of PACKED structures

Improved run-time rangechecking

INTRODUCTION Page 1-2
PURPOSE OF THESE NOTES

The Chapter oun known bugs and suggested improvements was updated.

1.2 INSTRUCTIONS FOR USE
l.2.1 Global Symbols For Switching Between Versions

The PRAXIS V74 and PRAXIS V75 system—wide global symbol were added. All
previous versions of the compiler have been removed from the system,

These symbols switch all logical symbols, symbols, and library names so that if
a users command files are written to use the library name logical symbols as
described above, a complete switch between the versions of the compiler can be
accomplished by typing one of these symbols, then recompiling and linking with
the normal command files.

PRAXIS V74 - reassigns all logicals and symbols to point to
version 7.4

PRAXIS V75 - reassigns all logicals and symbols to point to
version 7.5

PRAXIS V - print version number of Praxis now assigned to

CHAPTER 2

IMPROVEMENTS TO THE PRAXIS COMPILER

Unless otherwise stated, all changes apply to both the PDP-11 and VAX compiler.
Most improvements have example programs that were used for testing, and the
names of these examples are given.

2.1 LINE NUMBERS
2.1.1 Through To Compiler Output Files

During detail debugging, particularly at the software/hardware interface, the
source line number which caused a particular set of executable instructions to
be generated has always been needed. These line numbers are now passed
completely through the compiler to the PDP-11 Mll files and the VAX macro
listing files. These line numbers will also aid future efforts to optimize the
compiler., The following pages show a sample source file listing and Mll listing
from the PDP-11 compiler.

2,1.2 Lines That Have Only A <FF>

Lines that have only a <FF> now count as a line number. This allows a user to
move down N records in a file to get to line N.

IMPROVEMENTS TO THE PRAXIS COMPILER

LINE NUMBERS

e
// example of line numbers passed through to Mll file
f] = e
main module TESTDB

declare
AAA : integer
enddeclare
for I :=1 to
AAA = 1
endfor
AAA = 4
endmodule
TESTDB

Title

psect
181:

end

$Codel,rel,con,lcl,i,ro

jsr

tst
mov

mov
inc

cmp
ble
tst

mov
tst
rts
131

pc,pSinit

-(sp)
#1,-(sp)

@sp,2(sp)
@sp

@sp,#12
183
(sp)+

#4 ,@sp
(sp)+
pc

line
line
line
line

line

line

line

number
number
number
number

number

number

number

O O oo

10

11

12

Page 2-2

IMPROVEMENTS TO THE PRAXIS COMPILER Page 2-3
LINE NUMBERS

2.1.3 Line Numbers Displayed On Traceback (VAX)

The Praxis compiler now puts line number information in the VAX object file so

that if the program crashes, the traceback dump will show the line numbers on
the call stack.

2,2 INTERFACE TO THE VAX VMS SYMBOLIC DEBUGGER

The Praxis compiler now supports many (but not all) of the features of the VMS
Symbolic Debugger. The following features are supported:

Breakpoints at any line

Source line display

Single stepping by lines

Examination/modification of static variables by name
Register examination

Any debugger command that can be issued for macro code

The following feature is not supported:

Examination/modification of dynamic variables by name.

Note however, that dynamic variables can be accessed by reference to the
generated macro code and use of the macro code debugger commands (i.e. register
offsets, etc.).

2.2.1 Use routine names Default True On VAX
To support the use of the Symbolic Debugger on the VAX, the Use routine names

compiler directive was changed to be true for the VAX compiler by default. The
default value is still false for the PDP-11 compiler.

2.2.2 How To Use The VMS Symbolic Debugger With Praxis

All Praxis sources compiled with version 7.4 and subsequent versions

IMPROVEMENTS TO THE PRAXIS COMPILER Page 2-4
INTERFACE TO THE VAX VMS SYMBOLIC DEBUGGER

will have the necessary information for the debugger interface within their
object files. To use the VMS Symbolic Debugger, the image should be linked with
/debug. No loss in run time efficiency occurs if the program is not linked with
the debugger. Users should study the Symbolic Debugger Manual.

Some important commands are:

set module/all — Debugger reads in symbols for all modules.
One should probably perform this command
before doing anything else.

set break/line -~ Set break point at each line. Useful
for single stepping through code which
has no matching Praxis source program.
(cancel break/line - removes it)

set scope module name - Sets the scope of the debugger to the desired
module, For many commands issued, the current
module is assumed unless explicitly specified.

set break %line N — Where N is the number of line from top
(line 1) in the praxis source module.
The listing file will also provide the
desired line number.

set mode screen — Screen mode debugging. More detail is given
later.
examine/decimal V - Examines static variable V in your program.

Returns the value in decimal.

Dynamic variables cannot be examined by name.
They can be examined by looking at register
contents and appropriate offsets. Looking

at the code generated by the compiler will
generally make it clear where the dynamic
varliables are stored.

examine/instruction @pc - examines the instruction to which program
counter is pointing. Can be used to figure
out where dynamic variables are stored.

go - Starts the program.

step ~ Single steps the program.

Setting debugger to screen mode will show the program source in the upper half
of the screen, and the outputs from the program and debugger commands in the
lower half of the screen. An example of a screen mode debugging is shown on the
following page. The program is suspended at line 25.

IMPROVEMENTS TO THE PRAXIS COMPILER
INTERFACE TO THE VAX VMS SYMBOLIC DEBUGGER

--SRC: module TESTLINE---source-scroll-----——-—---——euu——--

19: while a=1 do
20: b :=1
21: b := 2
22: endwhile
23:
24 a :=1

-> 25: b := 2
26:

27: endmodule

~=OUT === U PUE === === = == =

19: while a=1 do
TESTLINE\PRXAJD\A: 0
TESTLINE\PRXAJD\B: 2
stepped to TESTLINE\PRXAJD\LS$8

22: endwhile
stepped to TESTLINE\PRXAJD\ZLINE 24

24 a :=1

stepped to TESTLINE\PRXAJD\ZLINE 25
25: b := 2

Page 2-5

IMPROVEMENTS TO THE PRAXIS COMPILER Page 2-6
RUN TIME LIBRARY IMPROVEMENTS

2.3 RUN TIME LIBRARY IMPROVEMENTS

2.3.1 Screen Management Routines

The Screen Management Routines of the VMS Run Time Library were tested, and as a
result various improvements to the stubs to the Run Time Library (RTLSTUBS.PRX)
were made, and the module SMGDEF.PRX was added. SMGDEF should be '"used" to
obtain constants described within the Screen Management Routine descriptions in
the VMS manuals.

An example routine was written (PASTE.PRX) which establishes four virtual status
displays and one virtual command display on a VI-100 based "pasteboard.” The
command display is used to read commands. A number (1,2,3 or 4) is entered to
select the status display to be changed. The Up, Down, Left, and Right cursor
control keys can then be used to move the selected status display. The Gold key
(PFl) can be used to toggle the mode between moving the selected display and
changing its size,

Note that the command line editor must be turned off (Set Term/moline edit) to
run this example because it uses the Up and Down arrows.

2.4 VARIADIC ARGUMENT IMPROVEMENTS

2.4,1 Small Size Variadics

Prior to version 7.5, small size objects passed to a procedure which expected a
variadic number of arguments were not accessed correctly by the called
procedure. This has been fixed. See the example program VARADICIl.PRX

2.4.2 Zero Arguments Passed To Variadic Parameter

Prior to version 7.5, if no arguments were passed to a parameter that was

declared to be variadic, the PDP-11 code generated would crash, This has been
fixed. See example VARIADICI,PRX.

2.4.,3 Variadic Flexible Arrays

Support for Variadic Flexible array arguments was added during version 7.3 and
improved in version 7.5. See example program VARIFLEX.PRX. It was discovered
that in version 7.3 the flexible arrays were all pushed on the stack prior to
calling the procedure. This would work (inefficiently) on the VAX but would
crash the PDP due to lack of stack space. This has been fixed in version 7.5 so
that only the address of the arrays are pushed on the stack.

IMPROVEMENTS TO THE PRAXIS COMPILER Page 2-7
VARIADIC ARGUMENT IMPROVEMENTS

2.4.4 Keyword References To Variadic Parameters

Objects passed to a procedure as a variadic argument may be referenced 1n the
keyword style. Each reference is in order. See example program VARIKEY,PRX

2.5 OVERFLOW DETECTION
2.5.1 Integers And Cardinal

Integer and cardinal overflow detection has been implemented on the VAX and
improved on the PDP within version 7.5 of Praxis. Integer overflow detection
appears to work correctly in all situations where there are machine instructions
to perform the desired operation on the desired size operands. For example,
add, subtract, and multiply of 8 bit, 16 bit, and 32 bit operands on the VAX,
and the same operations on 16 bit operands on the PDP. On the PDP, support for
overflow detection of self-modified operands was made to work correctly (i.e. A
*= +]). Other types of operations already worked on the PDP. See OVFLTEST.PRX
as an example. Cardinal overflow detection also seems to work correctly,
however, few actual tests were performed.

The compiler implements operations on sizes of operands which are not supported
by the machine hardware as a series of machine instructions, often involving
temporary variables, shifting, unpacking and packing operations. It would be
quite difficult to implement complete overflow testing in situations not
supported directly by machine hardware - 9 bit integers for example.

Further testing through usage may turn up situations where integer overflow
detection is not performed correctly, since there are an infinet number of
combinations to test. It is believed that any such problems could easily be

fixed in the future provided they involve instructions for which the machine
hardware provides single instruction support.

2.5.2 Floating Point Overflow

The detection of floating point overflow on the VAX is done directly by the
hardware and results in a hardware fault trap instead of a bit being set in the
program status word (PSW). It would be feasible in the future to write a
procedure to catch the hardware trap and this could be done if it were worth
while to users of the language.

2.6 PACKING
2.6.1 Packed Structures Of Unpacked Objects

Prior to version /.5 packed structures with unpacked arrays of unpacked objects
which were over 32 bits in size but not an even number of 16 bits in size were
constructed incorrectly. The size of objects which are greater than 32 bits in
size (16 bits in size on PDP) are supposed to be rounded up to the nearest 16

IMPROVEMENTS TO THE PRAXIS COMPILER Page 2-8
PACKING

bits. This was not done in the routine that performs structure declarations in
the compiler prior to version 7.5. See the example program ODDPACK.PRX.

2.7 RANGECHECKING IMPROVEMENTS
2.7.1 Rangechecking On Size Conversions At Run-time

Previous versions of the compiler performed incorrect run—time rangechecking
when a size conversion was required between the source and the destination (for
example, A := B, where A is 16 bit integer and B is 32 bit integer). This was
corrected.

2.7.2 Rangechecking Of Expression Evaluation At Run—~time.

Previous versions of the compiler would not range check the result of a source

expression prior to the answer being transfered to the destination. (for
example, A := B + 1), This was corrected.

2.7.3 Optimization Of Run-time Rangechecking.

Optimization was added to run-time rangechecking such that if it is obvious that
the source cannot be larger than the destination run—time rangechecking is not
performed. (for example, A := B when A has a declared range and size which
completely incompases the declared range and size of B). This substantially
reduced the amount of code generated when rangechecking is armed.

2.8 DEBUGGING IMPROVEMENTS
2,8.1 Better Diagnostic Messages
2.8.1.1 ADDRESSOF Function Argument Diagnostic Added -

The function ADDRESSOF cannot return the address of a constant. Previous
releases of the compiler diagnose an attempt by the user to do this, and in fact
generated bad code when it was attempted. The argument for ADDRESSOF must be a
variable. If the argument for ADDRESSOF is not a variable, a diagnostic message
"need to use variable here instead of <what was there>" is generated.

2.8.1.2 Better Explanation Of Some Diagnositics -

A bug was fixed within the internal routine print_mode to pass an explain flag

to recursive calls. This should result in clearer diagnositics 1in some
situtations.

IMPROVEMENTS TO THE PRAXIS COMPILER Page 2-9
DEBUGGING IMPROVEMENTS

2.8.1.3 Source Lines Over 132 Characters Diagnostic Message Added -

Source line over 132 characters long used to generate an abstract error message,
leading to confusion about the real problem. A better diagnostic was added.
Source lines larger than 132 characters long now generate the message "Record in
source file bad, probably too long.”

CHAPTER 3

EXAMPLE PROGRAMS

3.1 INTEGER OVERFLOW DETECTION

main module OVFLTEST
use TEXTIO

declare
C : static 32 bit integer
enddeclare

ARM X OVERFLOW

guard
C := -1
repeat
C *= *2
until false
catch

case x_overflow:
out line (TTY, "Overflow')
endguard
endmodule

EXAMPLE PROGRAMS Page 3-2
VARIADIC ARGUMENTS OF SMALL SIZE

3.2 VARIADIC ARGUMENTS OF SMALL SIZE

it
// Example of the use of Variadic arguments

// of small size and of zero quantity

e
main module VARITESTI

use TEXTIO

procedure VARITESTI!

param
Dummy : in val integer
Position : variadic in val integer range 0..15 // BUG FIXED
// small value args
endparam
out_integer (TTy, High(Position), " Number of variadics = ")

out_string (TTY, "CHI>: ")

for I := 1 to high (Position) do
out_integer (TTY, Position [I], " ")
endfor

out_record (TTY)
endprocedure

VARITEST! (1
VARITEST1 (1
VARITESTL (1
VARITEST! (1
VARITEST1 (1
VARITESTI (1

(1

VARITESTI) // BUG FIXED: # Variadics = 0

endmodule

EXAMPLE PROGRAMS Page 3-3
VARIADIC NUMBER OF FLEXIBLE ARRAYS

3.3 VARIADIC NUMBER OF FLEXIBLE ARRAYS

// Example of Use of Variadic number of flexible arrays
/=== -—=- -
main module VARIFLEX

use TEXTIO
procedure VAR (a: variadic in ref packed array[l..?n] of char)

// Note that high() works for both number of variadics and length
// of flexible arrays

for i := 1 to high(a) do
out_string (tty, a[i], high(ali]))
out string (tty, " ")

endfor

out_Record (tty)
endprocedure

VAR ("HI" R "THERE" , ”YOU" . IIALLII)

endmodule

3.4 KEYWORD REFERENCES TO VARIADICS

main module VARIKEY
use TEXTIO

procedure VARIKEY (AAA : variadic in val integer)
for T := 1 to high (AAA) do
out_integer (TTY, AAA [i])
out record (TTY)
endfor
endprocedure

VARIKEY (AAA:100, AAA:-200, AAA:300)
endmodule

EXAMPLE PROGRAMS
PACKED STRUCTURES OF ODD SIZE UNPACKED OBJECTS

3.5 PACKED STRUCTURES OF ODD SIZE UNPACKED OBJECTS

L e et
// Example of Packed structure of odd size unpacked objects
// (crashed compilers prior to version 7.5)
L Bt e
module ODDPACK
export Time Base Type
declare
Samp_inter type is 8 bit integer
Brpts type is structure // 40 bits declared
Loc : integer
Samp_inter : Samp inter type initially 1
endstructure

Time Base Type is packed structure

Brpts : packed array [1..2] of brpts type
Samp trig : integer
endstructure
enddeclare

endmodule

Page 3-4

EXAMPLE PROGRAMS Page 3-5
USE OF RTL SCREEN MANAGEMENT ROUTINES

3.6 USE OF RTL SCREEN MANAGEMENT ROUTINES

// example of use of SMG routines of the RTL
//
// Note: the Command Line Editor must be disabled to run this
// (Set term/noline edit)
[mmm e e e
main module PASTE
use TEXTIO
use SMGDEF,SSDEF
use RTLSTUBS
use VMSSTUBS, VMSTYPES, VMSPROC

declare

N _Status Displays = 4

Selected Display : integer initially 1

Operation is [Move, Change Size]

Selected Operation : Operation initially Move

Pasteboard ID : long cardinal

Keyboard ID : static long cardinal

Keytable ID : long cardinal

N_pasteﬁaard_rows : long:integer

N Pasteboard Columns : long integer

Status_Display ID : array [l..N Status_Displays] of long cardinal
Command Display ID : long cardinal

Display—Messagé_ : desc?iptor

Command:hessage : descriptor

SMG_Status : static long cardinal

Recieved Text : descriptor

Recieved:text_puffer : static packed array [1..120] of char
Display message buffer : packed array {1..9] of char
Prompt_}fring - : array [Operation] of descriptor

Position_Array is array [l..N_Status Displays] of long_integer

Status_Position Row : Position Array initially Position_array (
[1]:1, [2]:5, [3]): 10, [4]:15)

Status_Position Column : Position Array initially Position Array (
[1):1, [2T:5, [3]: 10, [4]:15) -

Status_Size Row : Position Array initially Position array (
(1]:5, {2):5, [3]): 5, [4]:5)

Status_Size Column : Position Array initially Position Array (

[1]:20, [2]:20, [3]: 20, [4]:20)

// special keys

up message : static descriptor

EXAMPLE PROGRAMS

USE OF RTL SCREEN MANAGEMENT ROUTINES

down_message
left message
right message
gold message

up_key

down key
left_key
rigHE_key
gold key

enddeclare

static descriptor
static descriptor
static descriptor
static descriptor

static descriptor
static descriptor
static descriptor
static descriptor
static descriptor

procedure Define Special Keys

param
Keytable ID :

keyboard:ID :
endparam

Load_string descriptor
Load_string descriptor
Load string descriptor
Load_string descriptor
Load string descriptor

Load_string descriptor
Load string descriptor
Load string descriptor
Load_string descriptor
Load_string_descriptor

declare
one bit logical is

in ref long cardinal
in ref long cardinal

(Up_Message, "UP")
(down Message, '"DOWN")

(left Message, "LEFT")
(right_Message, "RIGHT")
(gold message, "GOLD")

(Up_key, "UP")
(down_key, "DOWN")
(left_key, "LEFT")
(right_key, "RIGHT")
(Gold_key, "PFI'")

1 bit logical initially 2#0

Attrib _type is packed array [0..31] of one bit logical

Actrib : Attrib_type initially Attrib_type (
[SMG“$V_KEY NOECHO]: 2#1,
[SMG’$V_KEY TERMINATE] : 2#1)
enddeclare B
SMG_Status := SMG”$ADD KEY DEF (Keytable ID, UP Key,
attributes:Attrib,
equiv_string:UP message)
SMG_Status := SMG™$ADD_KEY DEF (Keytable ID, Down Key,
attributes:. Attrib,
equiv_string:Down message)
SMG_Status := SMG~ $ADD KEY DEF (Keytable ID, LEFT key,
attributes:. Attrib,
equiv string: Left_message)
SMG_Status := SMG”$ADD_KEY DEF (Keytable ID, Right Key,

attributes:Attrib,
equiv_string:Right message)

Page 3-6

EXAMPLE PROGRAMS Page 3-7
USE OF RTL SCREEN MANAGEMENT ROUTINES

SMG Status := SMG“$ADD KEY DEF (Keytable ID, Gold Key,
attributes:Attrib,
equiv_string:Gold message)
SMG_Status := SMG“$SET KEYPAD MODE (Keyboard id, cardinal o))
endprocedure
Display message Buffer := "DISPLAY N"

Load string descriptor (display message, Display_message buffer)

Load string descriptor (Recieved text, Rec1eved text buffer)

Load string descriptor (Prompt . string[Move] "Move which way?")

Load string descriptor (Prompt string [Change_51ze] "Size which way?")

SMG_Status := SMG”$CREATE PASTEBOARD (Pasteboard 1D,
PB rows:N Pasteboard rows,
PB_Columns: N Pasteboard Columns)

for N := 1 to N Status Displays do

SMG_Status := SMG~ $CREATE VIRTUAL DISPLAY
(Status_Size Row [N]
Status_Size | " Column [N],
Status Display ID [N],
SMG”$M_BORDER, SMG”$M REVERSE)

SMG Status SMG'$PASTE_VIRTUAL~DISPLAY
(Status Display ID [N],
Pasteboard ID,
Status POSltlon . Row [N},

Status Position Column [N])

Display Message Buffer [9] := char (N + integer ($1) - 1)

SMG_Status := SMG”$PUT_CHARS
(Status Display ID [N],
Display Message, L, 10)

endfor
SMG_Status := SMG”$CREATE_VIRTUAL DISPLAY (1, 60, Command Display ID,
SMG”$M_BORDER) ///, SMG™$M REVERSE)
SMG_Status := SMG”$PASTE_VIRTUAL DISPLAY
(Command Display ID, Pasteboard 1D,
21, 2)
SMG_Status := SMG™SCREATE VIRTUAL KEYBOARD (Keyboard ID)

EXAMPLE PROGRAMS Page 3-8
USE OF RTL SCREEN MANAGEMENT ROUTINES

SMG_Status := SMG”SCREATE KEY TABLE (Keytable ID)

Define Special Keys (Keytable ID, Keyboard ID)

repeat
SMG_Status := SMG”$SET CURSOR ABS (Command Display ID, 1, 1)
1

b
SMG_Status SMG”$DELETE LINE (Command Display_ ID, 1, 1)

declare
Recieved string_length : word_cardinal

Legal Input : boolean initially false
enddeclare

SMG_Status := SMG'SREAQ_COMPOSED_LINE
(Keyboard ID, Keytable ID,
Recieved_féxt, Prompt String [Selected_Qperation],
Recieved string length,
Display ID:Command Display ID)

select Recieved text buffer [1] from
case $U:
select Selected Operation from
case Move:
Status_Position Row [Selected Display] *= -1
Legal Input := true
case Change Size:
Status_Size Row [Selected Display] *= -l
Legal Input := true
endselect
case SD: // SMG”$K_TRM DOWN:
select Selected Operation from
case Move:
Status Position Row [Selected Display] *= +I
Legal Input := true
case Change Size:
Status_Size Row [Selected Display] *= +1
Legal Input := true
endselect

case $L: /1 SMG”$K TRM LEFT:
select Selected Operation from
case Move:
Status_Position Column [Selected Display] *= -l
Legal Input := true
case Change Size:
Status;gize_Column [Selected Display] *= -1
Legal Input := true
endselect

case $R: /! SMG”$K_TRM right:
select Selected Operation from
case Move:

EXAMPLE PROGRAMS
USE OF RTL SCREEN MANAGEMENT ROUTINES

Status Position_Column [Selected Display] *= +1
Legal Input := true
7/ SMG Status := SMG”$PUT CHARS
// (Command Display ID, right Message, 1, 1)
case Change Size:
Status Size Column [Selected Display] *= +1

Legal Input := true
endselect
case $G:
if Selected Operation = Change_size do
Selected Operation := Move
otherwise
Selected Operation := Change size
endif
case $1:
Selected Display := 1
case $2:
Selected Display := 2
case $3:
Selected Display := 3
case $4:
Selected Display := 4
endselect

if Legal Input do
select Selected Operation from
case Move:
SMG_STATUS := SMG”™SMOVE VIRTUAL DISPLAY
(Status Display ID [Selected | Displayl],
Pasteboard ID,
Status__ Positlon Row [Selected Display],
Status_Position Column [Selected Dlsplay])
case Change Size:
SMG_Status := SMG~ $CHANGE VIRTUAL DISPLAY
(Status Display ID [Selected Displayl,
Status Size Row [Selected Dlsplay]
Status | Slze Column [Selected Display]
SMG”~ $M BORDER SMG~ $M_REVFRSE)
endselect
endift

until false

endmodule

Page 3-9

CHAPTER 4

SUGGESTED FUTURE IMPROVEMENTS

4.1 DECLARATIONS
4.1.1 Packed Packed Structures Of Characters

Packed Packed declarations were in the language design but were not completely
implemented, and have never been used on Nova. However, Packed Packed
structures, when all the items of the structure are either characters or arrays
of characters, appear to work correctly but should be tested thoroughly. They
are very handy for use as organized I/0 blocks. Other combinations of packed
packed times should be tested to find out how much work it would be to
implement.

4.1.2 Equivalent Integer And Cardinal Constants
Integer and Cardinal Constants (i.e., l, 2, 5) should be equivalent so that it”s

not necessary to specify cardinal(2) every time one needs a 2 in an expression
that requires a cardinal.

4.,1.3 8illy Declarations
Some silly declarations should be disallowed. For example:

A is integer
B is array [A] of ...

Is legal, but shouldn”t be (i.e., extremely big array).

4.2 DYNAMIC ALLOCATION ISSUES

SUGGESTED FUTURE IMPROVEMENTS Page 4-2
DYNAMIC ALLOCATION ISSUES

4,2.1 Allocation Of Objects With Holes
The allocation of a flexible array of items with holes in them, has the same

inherent problem as holes in other objects described above. However, for
Version 7.2 no clearing of allocated items with holes was implemented.

4.2.2 Type Check Of Allocate Size Variable

There is no type check of the allocate size variable. See the number 0.4 in the
following example - which compiles!

declare
Flex array is packed array [l..?n] of char
P is pointer Flex array
Tl: static P

enddeclare

Tl := allocate P (0.4)

4,3 INITIAL CONDITIONS
There are still some examples of complicated combinations of structures and
arrays and multiple imports that do not set imitial conditlons in an understood

manner. This needs further study, but is quite useful now for all but the most
complicated situations.

4.3.1 Initially Sizeof

The declartion sentence "C : cardinal initially sizeof (A)" returns zero
regardless of size of A. See EVAL.PRX

4.4 SETS

The entire concept of the use of sets is not well understood within the present
users of the language. Testing of the use of sets indicates that on the Vax
compiler:

declarations work

initially works

constructors do not work

SUGGESTED FUTURE IMPROVEMENTS Page 4-3
SETS

the <= and < operators fail in the syntax phase of compilation,

+, —, * operations don"t work for sets of over 32 items.

Nothing regarding sets works on the PDP-11l. Good useful example programs need
to be prepared and tested. see SETTEST.PRX.

4.5 MATHEMATICAL OPERATIONS
4.5.1 Reincorporate The Conversion Routines

Pick up the differences in the routines used in Laser Diagnostics. Test the
conversion routines ~ make a test package. LSI-117?

4.5.2 Unsigned Comparisons

Unsigned comparisons are not implemented. This means that comparisons of
cardinals 1is done with signed comparisons. Therefore, if a cardinal is large
enough to use what would be the sign bit of the size of the instructions
available on the respective machines (8, 16, 32), the less—than or greater—than
comparison will be incorrect. The equal or not-equal comparison 1is still
correct., This effects both mathematical user written statements and range
checking. Also, since the compiler itself is written in Praxis, compile-time
range checking of 32 bit cardinals is not implemented.

4.5.3 Real Exponentiation

Exponentiation is not 1implemented for real bases. Therefore, i ** j |jis
supported, but r ** j is not.

4.5.4 Long Real Constants

Long real constants on VAX is not supported. The following does not work:
r : long real initially 1.0

Instead, one must type:

r : long_real initially long real (1.0)

SUGGESTED FUTURE IMPROVEMENTS Page 4-4
MATHEMATICAL OPERATIONS

{This should be simple to fix} Also, suspect that other long real operations not
correct.

4.5.5 Long Real On PDP Not Implemented.
4.5.6 Round, Floor, Ceiling For The PDP-11
Run time procedures that perform round(), floor(), and ceiling() need to be

implemented within the runtime support package for the PDP-11. Compiler calls
to the routines exist.

4.6 PROCEDURE INTERFACE ISSUES
4.6.1 Conversion Of Real To Integer On PDP

The conversion of real to integer on PDP does not work in the following example:
(ie the CGTABLES pattern may be wrong)

procedure CONVERT (X:integer)
endprocedure

declare (A = 2000.0)

CONVERT (integer (A))

// Note that the following works:

Declare (I : integer)
I := integer (A)

4.6.2 Status Of "module name . Imported from'" Syntax?
4.6.3 Confusing N On Multiple Flexible Arrays
Parameter statement of

A,B : inout packed array [l..?N] of char

is accepted, but which does N apply to?

4.6.4 OUT Flexible Array - What Is It?

Why is out flex array unimplemented? What are its rules?

SUGGESTED FUTURE IMPROVEMENTS Page 4-5
PROCEDURE INTERFACE ISSUES

4.6.5 Functions Which Return Flexible Arrays

Can be coded and compile without error on VAX, but don”t run correctly. On PDP,

compiler error '"inconsistent stack address assignment." This should either be
fixed, or a diagnostic should be inserted to prevent users from coding such a
return. See FUNSTGTST.PRX for example.

4.6.6 Reference To Part Of Structure Returned From Function

Functions can return a structure, but a reference to a portion of the structure
directly in the sentence with the function call will compile without error but
will not run correctly. The function is never called. For example:

/== e e e
// PRAXIS BUG — never calls function TEST...
] = m e e
main module PARTFBUG
declare
A is structure
J : array [l..10] of integer
B : integer
C : integer
endstructure
Joe : static A
enddeclare
function test ()
returns test:A
endfunction
Joe . B := Test () . B // This line has a bug in it....
endmodule
.ENDLITERAL
.HL1 Flow Control
.HL2 Tag field inside a Variant Structure

Present compiler allows select on a tag field inside a variant - not good.

.HL1 Range Checking

.HL2 Range Checking of Different size objects

Range checking is not performed correctly during the assignment of
a 16 bit integer to a 32 bit integer. The whole subject of range checking
between different size objects needs to be investigated.

-HL1 Efficiency Problems

SUGGESTED FUTURE IMPROVEMENTS
PROCEDURE INTERFACE ISSUES

Page 4-6

.HL2 Large Range of Cases

Select on an integer with a very large range of cases (1, 100000)
causes
the compiler to take an N*N amount of time to process the
cross—jumping optimization for the N branches in the select. The
compiler is smart enough to convert.

.HL2 VAX Compiler inefficient on select, PDP-1i is good

See example by J. Wilkerson.

.TEST PAGE 14

.LITERAL

from: to:

select 1 from if 1 =1 do

case 1: /lee..
/leee. orif i = 100000 do

case 100000: flees
//... otherwise

default: /..
//.. endif

endselect

The present algorithm decides based on the time/space trade-offs on the

number of "cases."

4,7 RUN TIME SUPPQORT, LSI-1l1

4,7.1 LSI-11 Interrupt Routines

Separate the normal register interrupt routine from the floating point

This decision may not always be correct.

interrupt routine for stand alone LSI-lls.

4.7,2 TEXTIO Separation

Separate the LSI TEXTIO into many modules so you don”t have to link to them all,

4.8 BETTER DEBUGGING AND DIAGNOSTICS

register

SUGGESTED FUTURE IMPROVEMENTS Page 4-7
BETTER DEBUGGING AND DIAGNOSTICS

4.8.1 Additional Compile-time Range Checking

Assignment of large objects (strutures or arrays) 1is not range checked at

present. This could be done. This applies to both compile time and run time
range checking.

4.8.2 Range Checking On Subscripts Of Array Constructors

4,8.3 Check Forward Procedure Same As Actual Procedure

Forward procedure statements are not completely checked to be sure that they are

the same as actual procedure statement. (i.e., made actual INOUT when forward
was OUT and no diagnostic.)

4.8.4 Check Size Of Actual Arg <= Size Of Formal Arg When By VAL

This may have already been done — must test.

4,8.5 Detection 0f Comparisons Of Objects With Holes

An optional diagnostic to detect comparisons of objects with holes would be

useful for finding code that may have had bugs with older versions of the
compller due to holes. It would also be useful to write code that runs a little
faster (i.e., it"s faster if holes don”t need tc be filled).

4.8.6 Warning On Too Few Components In Table Of Strings

Why doesnt BADTABLE.PRX warn about too few components in table? Note that if
you take out blank character string, it does.

4.8.7 More Accurate Line Number Of Errors

Find line number of errors more accurately. Giving the line number of the end
of the module is useless.

4.8.8 Create_Unique Global Symbols Compiler Directive

Add a "create unique_global symbols' compiler directive that causes the symbols

generated in the PDPll MIl file to be both unique within 6 characters AND have
the full symbol name as follows:

SUGGESTED FUTURE IMPROVEMENTS Page 4-8
BETTER DEBUGGING AND DIAGNOSTICS

XXYYnn$§'"-=-——-—-~—- "

where
XX = first two characters of module name
YY last two characters of module name
nn base 36 number
—————— = jdentifier name string

4.8.9 Diagnostic When SIZEOF Result Will Not Fit.

Need a diagnostic on sizeof if size of item will not fit into size of left
variable (i.e., > 2**]16 bits).

4.8,10 Diagnostic Upon Export Of Dynamic I[tem From Main Module
A diagnostic should be issued when attempting to export a dynamic item from a

main module. Apparently this is a common error made by Pascal programmers but
one that Nova programmers have never had a problem with.

4.8.11 Diagnostic That Whatever Features Of Packed Packed Which Don”t Work

are not implemented.

4.9 OPTIMIZATION IDEAS
4.9.1 Array Referencing On LSI-ll

Array referencing into small size element arrays (i.e., 4 bits, etc.) on LSI-1l
could be optimized for space.

4.9.2 Initial Conditions Of Arrays, Structures

Use P_data for storing array and structure initial conditions or constructors.
As is, lists of MOV instructious are generated.

4,9.3 Register Allocation

Lots of room exists for improving register allocation. Needs study.

SUGGESTED FUTURE IMPROVEMENTS Page 4-9
OPTIMIZATION IDEAS
4.9.4 CG Table Pattern Improvements

Some of the CG tables are obviously less efficient than they could be.

4.9,5 Library Functions For String Operations

Library functions to do string comparisons. String descriptors - see Run Time
Library users Guide, page 5-17.

4,10 VMS VERSION 4 ISSUES
4,10.1 Module Name Limit Of 9 Characters

Restriction could be removed; however, would not be backward compatible.

4.11 SUPPORT ISSUES
4.11.1 32 Bit Integer In TEXTIO

We need a 32 bit integer procedure in TEXTIO for the LSI-ll. See R. Shelton”s
INT32.PRX,

4.11.2 Holes In The Compiler

Check all the places in the compiler that are now detected as having structures

with holes. Were any other bugs solved by this fix? Can they be recoded to
make the compiler run faster?

These modules have declarations with holes: OBJFILl, OBJFIL3, PHASE3, CGOUT,
CGACTION. MCODE had them, but they were removed- probable bug in reg

allocation.

These modules have structure constructors with holes: ATOM, MAKCOD, LOOKUP,
WALKSUB, SYNIN, MSTRC.

These modules have out val with holes: CGSPECIAL.

Note that the OPERAND structure has holes in it, and it is compared 1in several

places 1in the compiler., Also, there are some declarations of it without an
initially of the null operand.

4.12 DOCUMENTATION

SUGGESTED FUTURE IMPROVEMENTS Page 4-10
DOCUMENTATION

4.12.1 Revise/Rewrite "Programming In Praxis" Manual.
Work on this has begun. Revising all text to be accurate to the language as it
exists. Removing and replacing all examples such that only those that work

remain. Including useful material from the Reference Manual. Adding chapters
on run time support on both the VAX and LSI-11.

4,12,2 Test Suite
Command files could be written to organize the test suite for testing purposes
as well as making example programs available to the users as help files, A

listing of the test suite programs would be an excellent starting point for a
book of example programs.

4,12,3 Viewgraphs

We need a good set of viewgraphs as instructional aids to the language.

4,13 GENERAL SUPPORT

4.13.1 WALKER

Set up logical symbols to run WALKER. Describe its use to others. For now:

assign DISKSLIB:[PRAXISLIB.PRODUCTS.WALKER.VMX] MYWALK
walk :== SMYWALK:WALKER

4.13.2 CROSS (Phebus)

Put walker program written by Phebus into Praxis and make it work within our
system.

4.13.3 User Analyzer

Move the User Analyzer program into the Praxis Product and clean it up for
general use, This program analyzes all use of Praxis within specific

directories and generates a chart showing the quantity use of every feature 1in
the language.

CHAPTER 5

DETAIL CODE CHANGES TO THE COMPLLER

Support for the Symbolic Debugger was a major addition to the compilers. Listed
below are phrases which would indicate to someone familiar to the internals of
the compiler the areas which were modified or added. There 1is no reason to
believe that any of these changes would affect the correct operation of the
compiler in compiling sources.
The changes to the common (VAX and PDP) compiler code included:

Added line no to stack contents

Added line no to make atom

source_file array

C line no ccode

Debug Switch on the Command Line - has no effect yet

Debug symbol table. On by default.

do_line no action added to CGACTION

debug_code procedure - purpose

link debug code procedure

line numbers loaded into lexeme

static cells for debug code and lst debug code

makline procedure to insert a line number cell at end of code stream

added stkatm line parameter to get tree, and the line number of the

atom to each call to get tree (of which there are a great many...).

endfor_line in for statment node

DETAIL CODE CHANGES TO THE COMPILER Page 5-2

endwhile line filed in while statment node

condition line number transfered to result of zahn statment

added gmode, gdref, gcref, line no ccodes, do _line no actionvto tables
added is variable function to Valid

add literal output of line number to all intermediate code output of
Walk

new procedures OK simple output, OK lit output to support Walk

MDECL changed to set size of large unpacked structure as rounded

WALK changed to test overflow immediately after self-math instruction
VAX CGTABLES changed to use relative offsets for BVC instruction

WALKEXP changed so as not to restack variadic flexible arrays

The changes to the PDP-11 code consisted of only the addition of line number to
MILl listing.

The changes to the VAX code involved major additions to the object code
generation including:

add line numbers to listings of macro output

add object file debugger constant declarations

line code size procedure

procedure to dump the debugger block to the object file

set line_number procedure

load_delta pc procedure

send term block procedure

add to object procedure - must handle line numbers going backward
add_rtend block procedure

add_line numbers_to object procedure

add rtn_block procedure

DETAIL CODE CHANGES TO THE COMPILER Page 5-3

declare source files procedure - must pass list of source files
combined during this compilation to object file and debugger.

add_source_to_object procedure - adds information about the source
files

pass debug information through Phasel, Phase2, Phase3 of object
optimizer.

